Plant Disease Detection Using Deep Convolutional Neural Network

نویسندگان

چکیده

In this research, we proposed a novel 14-layered deep convolutional neural network (14-DCNN) to detect plant leaf diseases using images. A new dataset was created various open datasets. Data augmentation techniques were used balance the individual class sizes of dataset. Three image used: basic manipulation (BIM), generative adversarial (DCGAN) and style transfer (NST). The consists 147,500 images 58 different healthy diseased classes one no-leaf class. DCNN model trained in multi-graphics processing units (MGPUs) environment for 1000 epochs. random search with coarse-to-fine searching technique select most suitable hyperparameter values improve training performance model. On 8850 test images, achieved 99.9655% overall classification accuracy, 99.7999% weighted average precision, 99.7966% recall, 99.7968% F1 score. Additionally, better than existing learning approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

Pedestrian Detection with Deep Convolutional Neural Network

The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in comple...

متن کامل

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet

Facial Key Points (FKPs) Detection is an important and challenging problem in the fields of computer vision and machine learning. It involves predicting the co-ordinates of the FKPs, e.g. nose tip, center of eyes, etc, for a given face. In this paper, we propose a LeNet adapted Deep CNN model NaimishNet, to operate on facial key points data and compare our model’s performance against existing s...

متن کامل

Deep Columnar Convolutional Neural Network

Recent developments in the field of deep learning have shown that convolutional networks with several layers can approach human level accuracy in tasks such as handwritten digit classification and object recognition. It is observed that the state-of-the-art performance is obtained from model ensembles, where several models are trained on the same data and their predictions probabilities are ave...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12146982